Noncompact Liouville surfaces

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Touching random surfaces and Liouville gravity.

Large N matrix models modified by terms of the form g(TrΦn)2 generate random surfaces which touch at isolated points. Matrix model results indicate that, as g is increased to a special value gt, the string susceptibility exponent suddenly jumps from its conventional value γ to γ γ−1 . We study this effect in Liouville gravity and attribute it to a change of the interaction term from Oeα+φ for g...

متن کامل

Super Liouville action for Regge surfaces

We compute the super Liouville action for a two dimensional Regge surface by exploiting the invariance of the theory under the superconformal group for sphere topology and under the supermodular group for torus topology. For sphere topology and torus topology with even spin structures, the action is completely fixed up to a term which in the continuum limit goes over to a topological invariant,...

متن کامل

Super-liouville Equations on Closed Riemann Surfaces

Motivated by the supersymmetric extension of Liouville theory in the recent physics literature, we couple the standard Liouville functional with a spinor field term. The resulting functional is conformally invariant. We study geometric and analytic aspects of the resulting Euler-Lagrange equations, culminating in a blow up analysis.

متن کامل

Liouville Theory: Quantum Geometry of Riemann Surfaces

Inspired by Polyakov’s original formulation [1, 2] of quantum Liouville theory through functional integral, we analyze perturbation expansion around a classical solution. We show the validity of conformal Ward identities for puncture operators and prove that their conformal dimension is given by the classical expression. We also prove that total quantum correction to the central charge of Liouv...

متن کامل

Sharp Gradient Estimate and Yau’s Liouville Theorem for the Heat Equation on Noncompact Manifolds

We derive a sharp, localized version of elliptic type gradient estimates for positive solutions (bounded or not) to the heat equation. These estimates are akin to the Cheng-Yau estimate for the Laplace equation and Hamilton’s estimate for bounded solutions to the heat equation on compact manifolds. As applications, we generalize Yau’s celebrated Liouville theorem for positive harmonic functions...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Mathematical Society of Japan

سال: 1993

ISSN: 0025-5645

DOI: 10.2969/jmsj/04530459